Voltage, pressure and temperature relationship

Share with associates

Is there really a basis for voltage, pressure and temperature relationship?

Consider two charged bodies – direction of flow of charge between them doesn’t depend on the relative amount of charges on the bodies. It depends on the potential difference between them. It is a misconception that if they are connected by a wire the body with more charge will lose charge and the other will gain charge until the amount of charge is equal on both the bodies. (This article is on voltage, pressure and temperature relationship.)

Actually the thing is that charge will flow from one body to other if the charge density on the bodies are unequal. It will keep flowing until the charge density is equal on both the bodies. Charge density is a measure of electric potential. The more is the charge density on a particular object, the more is its electric potential. The two charged bodies will transfer charge from one to another because charge constitutes of elections. They repel one another due to having same kind of charge.

A practical life example

Now consider two rooms with unequal space and the number of people in those might be equal or unequal. Just think that density of people in those two rooms are unequal. If the two rooms are connected by a passage, some people will have a tendency to migrate from one room to another. Because too many people in a single room makes it congested and inhalation of the people gets obstructed. The shift of people from one room to another will continue until the density of people becomes almost equal on both the rooms. (This article is on voltage, pressure and temperature relationship.)

You  might also likeSeries connection in real life: the reason why series connection might be hazardous

The same thing is applicable for pressure. If we connect two cylindrical containers of water by a pipe at their lower end, water will definitely transfer from one to another. But the direction of flow will depend on relative height of water-column in the containers, not on the amount of water in them. If the thick container has more water in it but lower height of water column then it will lose water, the other will gain.

Role of temperature in heat science

Now about temperature. If we connect two bodies thermally, one will lose heat and the other will gain. This transfer of heat and direction of flow will not depend on relative amount of heat in the two bodies. it will depend on relative temperature, or temperature difference. The hotter body (the one with greater temperature) will lose heat even if it might be the one with less amount of heat. The other will gain heat if it has lower temperature, even if it is the one with greater amount of heat. Here comes the idea of ‘Heat capacity’. The second body will gain further heat although it already has greater amount of heat, just because its heat-capacity is greater. (This article is on voltage, pressure and temperature relationship.)

Voltage, pressure and temperature relationship
voltage and pressure relationship
Share with associates


Leave a Reply

Your email address will not be published. Required fields are marked *